
le guide de docker avec des schémas et des commandes interactives pour les gens
largués qui ont besoin d'explications détailées et qui mangent du terminal

et les titres à rallonge aussi

lelu awen

Sommaire

 • Avant-propos
 • Les conteneurs en bref
 ◦ À quoi que ça sert
 ◦ Open Container Initiative (OCI)
 • Docker
 ◦ Présentation générale
 ◦ Fonctionnement
 ▪ Conteneurs
 ▪ Images
 ▪ Volumes
 ▪ Ports
 ▪ Networks
 • Glossaire

2 / 14

Avant-propos

Le but de ce document est de fournir une base synthétique sur le sujet de l'utilisation de docker dans le cadre de la manipulation de conteneur de façon
impérative. Ainsi, les sujets suivants ne serons pas aborder:

 • Docker compose
 ◦ un outil de permettant de définir un ensemble de conteneur (projet) de façon déclarative.
 • Dockerfile

 ◦ Mécanisme de docker permettant de créer des Images1

Ce Guide par du principe que vous avez docker2 d'installer sur votre ordinateur afin d'exécuter les différentes commandes que ce dernier comprend.
De plus, nous n'allons pas revenir en détail sur le fonctionnement d'un terminal, des diverses commandes non liées à docker et nous survolerons les services
utilisés comme exemple.
De plus, ce guide vise à voir les fondamentaux de docker, de ce fait, il ne sera pas fait mention de docker desktop et de lazydocker, car bien que pratique, je
juge qu'il est fondamental de bien connaître le fonctionnement interne de docker avant de se faire assister par des outils externes.

Pour toute question, merci de me contacter au mail suivant: lelu.awen@proton.me

3 / 14

Les conteneurs en bref

██ À quoi ça sert

Avez vous déjà eu le problème suivant:
Imaginez que vous êtes étudiant, vous avez un cours sur de l'intégration continue, à tout hasard,

jenkins3, Le Professeur vous demande donc d'installer Jenkins sur votre ordinateur et là, le drame,
l'horreur, vous devez installer java4. Bien sur, vous allez voir sur la documentation d'installation de
Jenkins et vous voyez que ce dernier demande la version 21 de Java, hors, vous avez la version 25
d'installer pour vos projets ! Que faire ? Passer vos projets sur java 21 ? Désinstaller java 25 et le
réinstaller après le cours ? Dans tous les cas, c'est pas vraiment pratique. Maintenant, imaginez en
plus que vous êtes sur Windows et que vos partenaires de groupe sont sur Linux et MacOS, ils ont
chaqu'un des modalités d'installation différente.
Si seulement on pouvait avoir un système qui permet de faire en sorte que tout notre projet et ses
dépendances soit toutes regrouper dans un paquet, et que vous ayez juste à télécharger ce paquet pour
le lancer... Oh l'idée de génie vite faut que je lance ma startup avant qu'on me pique l'idée et on
pourra même utiliser une IA pour.. Oh, c'est le sujet de la diapo, c'est ça ?

Et oui, un des buts des conteneurs c'est ça, pouvoir mettre ensemble tout les composants d'une
application dans une boite, et pouvoir lancer cette boite de façon isolée du reste du système, un peu
comme son propre petit ordinateur. de cette manière on gagne plusieurs avantages:

 • ne pas avoir à gérer plusieurs versions des dépendences
 ◦ comme par exempleflake_schema avoir 2 version de node d'installer, ou deux version de java
 • ne pas risquer d'oublier des trucs qu'on à installer juste pour un projet
 ◦ Car il est installer que au seins de notre conteneur, et si on supprime celui-ci, on supprime
 aussi les programmes associé.
 • Pouvoir lancer des trucs "juste pour tester"
 ◦ Chaque conteneur est isolé de notre système, donc il risque pas de casser des trucs, et vu
 qu'on peut le supprimer après, on risque pas d'oublier de le désinstaller
 • Partager un environnement
 ◦ quel que sois le système d'exploitation, maintenant tout le monde peut faire les même commande
 pour avoir strictement le même environnement de travail que le voisin, finis les "Ah mais ton
 truc il marche pas parce que j'ai java 11 d'installer"

4 / 14

Les conteneurs en bref

██ Open Container Initiative (OCI)

Populariser par Docker, l'utilisation de conteneur n'est pourtant pas une exclusivité de ce dernier. Ainsi il existe d'autres outils permettant d'utiliser des
conteneurs, comme par exemple Podman. Afin de standardiser la définition de ce qu'est unn conteneur, Docker ainsi que d'autres acteurs ont mis en place l'Open

Containuer Initiative ou OCI, une structure ouverte servant d'autorité pour définir les standards régissant les conteneurs dits "OCI5", un peu à la manière du
Système de mesure International (SI) définissant par exemple le mètre, le gramme, ect...
Ces standards étant ouverts, n'importe qui peut les implémenter afin de construire son propre engine et pouvoir tout de même utiliser les systèmes existants.
Ainsi, bien que Docker et Podman sois deux implémentation différentes de ce standard, une image construite avec Docker peut parfaitement être utiliser avec
Podman et vis-versa.
On parlera ainsi de Conteneur OCI pour parler d'un conteneur construit celons ce standard.

5 / 14

Docker

██ Présentation générale

Maintenant qu'on a passé la partie ennuyante, rentrons dans le vif du sujet:
Docker c'est quoi ?
Fondamentalement, Docker est un programme permettant de créer, lancer et
gérer des conteneurs, des volumes, des network et des images respectant le
standard OCI.
Il est formé de principalement deux composants :

 • Docker daemon
 ◦ Son rôle est de fonctionner en arrière plan de votre ordinateur et
 de chapeauté l'exécution des conteneurs, le routage des requêtes

 entre ces derniers via les networks6 ainsi que l'accès aux fichiers
 de l'ordinateur via les volumes7
 • Docker CLI
 ◦ Ce composant fournis les commandes qui vont être utilisées pour
 manipuler le daemon, en pratique, lui demander de lancer un
 conteneur, créer une image, un volume ou un network.

En effet, pour rentrer vaguement dans les détails plus techniques, docker
fonctionne avec une architecture client / serveur. Le daemon fonctionne en
arrière-plan et est le "cœur" de Docker, tendis que les commandes servent
juste à envoyer des requêtes à ce dernier.

6 / 14

Docker -- fonctionnement

██ Commandes

Ok après toute cette théorie, voyons les différentes commandes permettant d'interagir avec docker et plus particulièrement avec les images docker.
Tout d'abord, les commandes docker sont structurés en 4 parties:

docker <module> <action> <arguments>

En détail:

 • docker: la commande de base pour appeller docker, toutes les commandes commencent par ça.
 ◦ <module>: le nom du module de docker que l'on souhaite utiliser, chaque module sert à interagir avec une partie spécifique de docker. Par exemple, le
 module image sert à interagir avec les images docker.
 ◦ <action>: L'action du module à réaliser, chaque module possède des actions qui sont lié à son utilisation. Par exemple, pour le module image, l'action

pull sert à télécharger une image depuis dockerhub sur son ordinateur.
 ◦ <arguments>: enfin, chaque action vas demander des arguments qui sont détailer dans le manuel de chaque action. par exemple, l'action pull du module

image demander le nom de l'image à télécharger.

Dans la pratique, si je veut télécharger l'image node:22, la commande à composer sera la suivante:

docker image pull node:22

▍ 󰋽 Conseil
▍
▍ Je vous invite à tester les commandes au fil qu'on les vois afin de les
▍ tester et de les mémoriser.

7 / 14

Docker -- fonctionnement

██ Images

Comme vu précédement, l'utilité de docker est de pouvoir créer et lancé des
conteneurs isolé du système et qui agissent comme des mini ordinateurs. Mais
pour cela, ils faut que le conteneur puisse savoir quoi lancé, de quels

applications il à besoin pour fonctionner, et sur quel distribution8 se
baser.

C'est l'utilité de l'image docker1, cette dernière sert en quelque sorte à
définir les ingrédients dont notre conteneur vas avoir besoin pour se lancer
correctement, contrairement au nom (et à mon schéma) peut laisser entendre,
elle n'a rien d'une image au sens graphique du terme. En réalité, c'est plus
quelque chose d'analog à un fichier .zip (ou .rar, ou .tar, ou .7zip, ou...
bon vous avez l'idée...).

Cette image est composée de layers9 (ou couches en bon français), qui
identifient et composent chaque élément de l'image. Cela permet à Docker de
dédupliquer différents morceaux des images que l'on téléchargent.
Ainsi, si l'on télécharge deux images qui ont besoin de nginx par exemple,
ces deux images vont partager un layer similaire, et ce layer n'aura besoin
d'être télécharger qu'une seul fois.

▓▓▓ nom des images

En règle générale, chaque image vas correspondre à un service, par exemple
si veut lancer une base de donnée mysql, je vais utiliser une image
nommée... mysql, pour un serveur web nginx, une image nommée... nginx, et si
je veut un interpréteur python... python.

▓▓▓ où trouver des images

Bon maintenant on sais à quoi ça sert, où est ce que je peut trouver quel
nom d'image utiliser et si une image existe pour le service que je cherche ?
Par exemple, mettons que je souhaite une image docker de node ?

La manière la plus simple est de chercher sur dockerhub10 (
https://hub.docker.com/) En reprenant notre exemple, si je cherche node, je
tombe sur cette page (https://hub.docker.com/_/node), qui est une image
officielle de docker, et donc subceptible d'être de bonne qualité, avec une
documentation fiable et à jour.

8 / 14

Docker -- fonctionnement

██ Images

▓▓▓ tag d'images

Maintenant, disons que l'on souhaite précisément la version 22 de node pour notre projet. On pourais
chercher une image qui nous donne précisément cette version, mais généralement les images sont
versionnée par ce qu'on appelle des tags, ils servent à spécifié une version précise d'une image,
généralement construite avec des petites différences, que ce sois une version plus ancienne, ou une
version spécifique.
Comment on spécificie en tag vous dites, tel le lecteur anthousiaste que vous êtes ? Eh bien la syntaxe
est asser simple, on spécifie le nom de notr eimage comme d'habitude, suivis de deux points puis notre
tag: node:<tag>. Mais ducoup, Comment savoir quoi mettre comme taf, redemendez vous d'une vois fébrile
et avide de savoir, à moins que ce ne sois que les premiers symptômes de la schyzophrénie qui me
frappent... C'est simple... Il suffit de regarder sur la page de documentation de l'image en question (
https://hub.docker.com/_/node), dans les premières lignes, on trouvera généralement une liste des tags
les plus courant, et en lisant plus en profondeur sur la documentation, on trouvera plus de détails sur
l'utilisation de ces derniers. Ainsi, au châpitre Image Variant (
https://hub.docker.com/_/node#image-variants), on trouve le paragraphe suivant:

▍ The node images come in many flavors, each designed for a specific use case.
▍
▍ node:<version>
▍ This is the defacto image. If you are unsure about what your needs are, you probably want to use this one. It is designed to be used both as a throw away
▍ container (mount your source code and start the container to start your app), as well as the base to build other images off of.

On peut y lire (en anglais dans le texte), qu'on peut utiliser le la syntaxe node:<version> pour récupérer une version précise de node, ainsi, avec node:22, on
vas récupérer une image avec la version 22 de node.

9 / 14

Docker -- fonctionnement

██ Images

▓▓▓ Commandes utiles

docker image pull <nom_image>:<tag>

Cette commande permet de télécharger une image docker depuis internet sur votre ordinateur. ex: docker image pull rancher/cowsay:latest

▍  Tip
▍
▍ Si aucun tag n'est préciser, la commande téléchargeta le tag latest

docker image list

Cette commande permet de lister les images présente sur votre ordinateur

docker image rm <nom_image>:<tag>

Cette commande permet de supprimer une image de votre ordinateur ex: docker image rm rancher/cowsay

▍  Warning
▍
▍ Vous ne pouvez pas supprimer une image en cours d'utilisation par un conteneur !
▍ Ainsi, vous devez d'abord supprimer les conteneurs utilisant cette dernière
▍ avant de la supprimer.

docker image search <recherche>

Cette commande permet de chercher des image docker correspondant à une requète, de la même façon que sur dockerhub, mais en ligne de commande. ex: docker image
search cowsay

10 / 14

Docker -- fonctionnement

██ Conteneurs

docker run --rm rancher/cowsay:latest "test"

snippet +exec is disabled, run with -x to enable

11 / 14

Docker -- fonctionnement

██ Volumes

12 / 14

Docker -- fonctionnement

██ Networks

13 / 14

██ Glossaire

1image docker:
2docker engine:
3jenkins:
4java:
5Conteneur OCI:
6docker networks:
7docker volumes:
8Distribution linux:
9layer d'image (docker):
10Dockerhub:

14 / 14

