le guide de docker avec des schémas et des commandes interactives pour les gens
largués qui ont besoin d'explications détailées et qui mangent du terminal

et les titres a rallonge aussi

lelu awen

o

o

o

o

Sommaire

Avant-propos
Les conteneurs en bref
A quoi que ca sert
Open Container Initiative (0OCI)
Docker
Présentation générale
Fonctionnement
m Conteneurs
= Images
m Volumes
m Ports
s Networks
1

Glossaire

2/ 14

Avant-propos

Le but de ce document est de fournir une base synthétique sur le sujet de l'utilisation de docker dans le cadre de la manipulation de conteneur de facon
impérative. Ainsi, les sujets suivants ne serons pas aborder:

e Docker compose
o un outil de permettant de définir un ensemble de conteneur (projet) de facon déclarative.
e Dockerfile

o Mécanisme de docker permettant de créer des Images1

Ce Guide nar di nrincine ane vnne avez rllan‘(ArZ d'inctallar <cur untre ardinatenr_afin rl':.:w:'\rn‘i-nr lec rl-i‘F‘Férnn‘h:c. ,rnmrp:mrinc ale re darniear comnrend .
De plus, nous n'allons pas revenir en détail sur le fonctionnement d'un terminal, des diverses commandes non liées a docker et nous survolerons les services

utilisés comme exemple.
De plus, ce guide vise a voir les fondamentaux de docker, de ce fait, il ne sera pas fait mention de docker desktop et de lazydocker, car bien que pratique, je
juge qu'il est fondamental de bien connaitre le fonctionnement interne de docker avant de se faire assister par des outils externes.

Pour toute question, merci de me contacter au mail suivant: lelu.awen@proton.me

3/ 14

Les conteneurs en bref

B A quoi ca sert

Avez vous déja eu le probléme suivant:

Imaginez que vous étes étudiant, vous avez un cours sur de l'intégration continue, a tout hasard,

jenkins3, Le Professeur vous demande donc d'installer Jenkins sur votre ordinateur et la, le drame,

1'harreinr wvnne devez inctaller iava Rien cur wvnuc allez vnir cur 1a dacimentatinn d'inctallation de
Jenkins et vous voyez que ce dernier demande la version 21 de Java, hors, vous avez la version 25

d'installer pour vos projets ! Que faire ? Passer vos projets sur java 21 ? Désinstaller java 25 et le
réinstaller aprés le cours ? Dans tous les cas, c'est pas vraiment pratique. Maintenant, imaginez en
plus que vous étes sur Windows et que vos partenaires de groupe sont sur Linux et Mac0S, ils ont
chaqu'un des modalités d'installation différente.

Si seulement on pouvait avoir un systéme qui permet de faire en sorte que tout notre projet et ses
dépendances soit toutes regrouper dans un paquet, et que vous ayez juste a télécharger ce paquet pour
le lancer... Oh l1'idée de génie vite faut que je lance ma startup avant qu'on me pique l'idée et on
pourra méme utiliser une IA pour.. Oh, c'est le sujet de la diapo, c'est ca ?

Et oui, un des buts des conteneurs c'est ga, pouvoir mettre ensemble tout les composants d'une
application dans une boite, et pouvoir lancer cette boite de fagon isolée du reste du systeme, un peu
comme son propre petit ordinateur. de cette maniére on gagne plusieurs avantages:

e ne pas avoir a gérer plusieurs versions des dépendences
o comme par exempleflake schema avoir 2 version de node d'installer, ou deux version de java
e ne pas risquer d'oublier des trucs qu'on a installer juste pour un projet
o Car il est installer que au seins de notre conteneur, et si on supprime celui-ci, on supprime
aussi les programmes associé.
e Pouvoir lancer des trucs "juste pour tester"
o Chaque conteneur est isolé de notre systeme, donc il risque pas de casser des trucs, et vu
qu'on peut le supprimer apres, on risque pas d'oublier de le désinstaller
e Partager un environnement
o quel que sois le systeme d'exploitation, maintenant tout le monde peut faire les méme commande
pour avoir strictement le méme environnement de travail que le voisin, finis les "Ah mais ton
truc il marche pas parce que j'ai java 11 d'installer"

Installing Java 21,
Jenkins, Maven, set
PATH so the maven
binary is available
system wide, remember

to stop the service
after i'm done so it
won't clobber my 8081
port

docker run --rm -p
8081:8081 -d
jenkins

4/ 14

Les conteneurs en bref

[l Open Container Initiative (0CI)

Populariser par Docker, l'utilisation de conteneur n'est pourtant pas une exclusivité de ce dernier. Ainsi il existe d'autres outils permettant d'utiliser des
conteneurs, comme par exemple Podman. Afin de standardiser la définition de ce qu'est unn conteneur, Docker ainsi que d'autres acteurs ont mis en place 1'Open
(‘nnf:\rinunr Tnitiativa an NCT 1ne cstriuctiire nnverte carvant d'antoaritéd nonr définir 1lec standards régissant les conteneurs dits "OCIS", un peu a la maniére du
Systéme de mesure International (SI) définissant par exemple le metre, le gramme, ect...

Ces standards étant ouverts, n'importe qui peut les implémenter afin de construire son propre engine et pouvoir tout de méme utiliser les systemes existants.
Ainsi, bien que Docker et Podman sois deux implémentation différentes de ce standard, une image construite avec Docker peut parfaitement étre utiliser avec
Podman et vis-versa.

On parlera ainsi de Conteneur OCI pour parler d'un conteneur construit celons ce standard.

runtime
spec

implé-
mentent

SN/

Docker

[l Présentation générale

Maintenant qu'on a passé la partie ennuyante, rentrons dans le vif du sujet:
Docker c'est quoi ?

Fondamentalement, Docker est un programme permettant de créer, lancer et
gérer des conteneurs, des volumes, des network et des images respectant le
standard OCI.

Il est formé de principalement deux composants

e Docker daemon
o Son rdole est de fonctionner en arriere plan de votre ordinateur et
de chapeauté 1'exécution des conteneurs, le routage des requétes

entre ces derniers via les netwnrks® ainsi que l'acces aux fichiers
de 1'ardinatenr via lec vnlimec

e Docker CLI
o Ce composant fournis les commandes qui vont étre utilisées pour
manipuler le daemon, en pratique, lui demander de lancer un
conteneur, créer une image, un volume ou un network.

En effet, pour rentrer vaguement dans les détails plus techniques, docker
fonctionne avec une architecture client / serveur. Le daemon fonctionne en
arriére-plan et est le "ceur" de Docker, tendis que les commandes servent
juste a envoyer des requétes a ce dernier.

docker

docker run -v <...> nginx

__________________ =

le daemon télécharge 1'image

<= - - - - - - - ——_

le conteneur a été lancé avec
1'id suivant: <container_id>

CLI docker Daemon

peut tu créer un volume avec <...> ?

peut tu créer un nouveau conteneur
avec 1'image "nginx" ?

je ne dispose pas de cette image en
local, je dois la télécharger

1'image est téléchargée et le
conteneur est créer

< — - ——

peut tu le lancer ?

____________________ >

ouli, voici son id: <container_id>

<< - - - — - - - - — -

6/ 14

Docker -- fonctionnement

I Commandes

Ok apres toute cette théorie, voyons les différentes commandes permettant d'interagir avec docker et plus particulierement avec les images docker.
Tout d'abord, les commandes docker sont structurés en 4 parties:

docker <module> <action> <arguments>

En détail:

e docker: la commande de base pour appeller docker, toutes les commandes commencent par ca.
o <module>: le nom du module de docker que 1'on souhaite utiliser, chaque module sert a interagir avec une partie spécifique de docker. Par exemple, le

module image sert a interagir avec les images docker.

o <action>: L'action du module a réaliser, chaque module possede des actions qui sont 1ié a son utilisation. Par exemple, pour le module image, 1'action
pull sert a télécharger une image depuis dockerhub sur son ordinateur.

o <arguments>: enfin, chaque action vas demander des arguments qui sont détailer dans le manuel de chaque action. par exemple, l'action pull du module

image demander le nom de 1'image a télécharger.

Dans la pratique, si je veut télécharger 1'image node:22, la commande a composer sera la suivante:

docker image pull node:22

7/ 14

Docker --

B Images

Comme vu précédement, 1'utilité de docker est de pouvoir créer et lancé des
conteneurs isolé du systeme et qui agissent comme des mini ordinateurs. Mais
pour cela, ils faut que le conteneur puisse savoir quoi lancé, de quels
Bnn11rations il a besoin pour fonctionner, et sur quel distribution8 se
aser.

C'ect 1'utilitéd de 1'imana dnrknrl ratte dernidre cert an nuelane cnrte A
définir les ingrédients dont notre conteneur vas avoir besoin pour se lancer
correctement, contrairement au nom (et a mon schéma) peut laisser entendre,
elle n'a rien d'une image au sens graphique du terme. En réalité, c'est plus
quelque chose d'analog a un fichier .zip (ou .rar, ou .tar, ou .7zip, ou...
bon vous avez 1'idée...).

Cette imane ect ramnncée de 1nvnr:9 (o1l rniichee an hnan_ francaic) and
identifient et composent chaque élément de 1'image. Cela permet a Docker de
dédupliquer différents morceaux des images que 1'on téléchargent.

Ainsi, si 1'on télécharge deux images qui ont besoin de nginx par exemple,
ces deux images vont partager un layer similaire, et ce layer n'aura besoin
d'étre télécharger qu'une seul fois.

B nom des images

En regle générale, chaque image vas correspondre a un service, par exemple
si veut lancer une base de donnée mysql, je vais utiliser une image
nommée... mysql, pour un serveur web nginx, une image nommée... nginx, et si
je veut un interpréteur python... python.

m ol trouver des images

Bon maintenant on sais a quoi ca sert, ol est ce que je peut trouver quel
nom d'image utiliser et si une image existe pour le service que je cherche ?
Par exemple, mettons que je souhaite une image docker de node ?

I a manidrae 1a nliie cimnle act de rharchar cur dnrknrhnhlo (
https://hub.docker.com/) En reprenant notre exemple, si je cherche node, je
tombe sur cette page (https://hub.docker.com/ /node), qui est une image
officielle de docker, et donc subceptible d'étre de bonne qualité, avec une
documentation fiable et a jour.

fonctionnement

docker image pull gateau:latest
—_—

hey docker, donne moi
une recette de gateau
au chocolat et les ingrédients

/

tient, un paquet avec ta
recette et les ingrédients pour
la faire

merci

>0 | >0

gateau:latest

tainer run gateau:latest
docker container run gateau:latest

maintenant fait moi
ma recette

oui maitre.esse

>0

imaginez que je sais

dessiner un gateau svp
ceci représente
un gateau

8/ 14

Docker -- fonctionnement

B Images
tag d'images

Maintenant, disons que 1'on souhaite précisément la version 22 de node pour notre projet. On pourais
chercher une image qui nous donne précisément cette version, mais généralement les images sont
versionnée par ce qu'on appelle des tags, ils servent a spécifié une version précise d'une image,
généralement construite avec des petites différences, que ce sois une version plus ancienne, ou une
version spécifique.

Comment on spécificie en tag vous dites, tel le lecteur anthousiaste que vous étes ? Eh bien la syntaxe
est asser simple, on spécifie le nom de notr eimage comme d'habitude, suivis de deux points puis notre
tag: node:<tag>. Mais ducoup, Comment savoir quoi mettre comme taf, redemendez vous d'une vois fébrile
et avide de savoir, a moins que ce ne sois que les premiers symptomes de la schyzophrénie qui me
frappent... C'est simple... Il suffit de regarder sur la page de documentation de 1'image en question (
https://hub.docker.com/ /node), dans les premieres lignes, on trouvera généralement une liste des tags
les plus courant, et en lisant plus en profondeur sur la documentation, on trouvera plus de détails sur
1'utilisation de ces derniers. Ainsi, au chapitre Image Variant (

https://hub.docker.com/ /node#image-variants), on trouve le paragraphe suivant:

| The node images come in many flavors, each designed for a specific use case.

node:<version>

This is the defacto image. If you are unsure about what your needs are, you probably want to use this one. It is designed to be used both as a throw away
| container (mount your source code and start the container to start your app), as well as the base to build other images off of.

On peut y lire (en anglais dans le texte), qu'on peut utiliser le la syntaxe node:<version> pour récupérer une version précise de node, ainsi, avec node:22, on
vas récupérer une image avec la version 22 de node.

9/ 14

Docker -- fonctionnement

B Images
¥ Commandes utiles

docker image pull <nom image>:<tag>

Cette commande permet de télécharger une image docker depuis internet sur votre ordinateur. ex: docker image pull rancher/cowsay:latest

docker image list
Cette commande permet de lister les images présente sur votre ordinateur

docker image rm <nom image>:<tag>

Cette commande permet de supprimer une image de votre ordinateur ex: docker image rm rancher/cowsay

docker image search <recherche>

Cette commande permet de chercher des image docker correspondant & une requéte, de la méme facon que sur dockerhub, mais en ligne de commande. ex: docker image

10 / 14

Docker -- fonctionnement

B Conteneurs
docker run --rm rancher/cowsay:latest "test"

snippet +exec is disabled, run with -x to enable

11 / 14

Docker -- fonctionnement

B Volumes

12 / 14

Docker -- fonctionnement

Bl \etworks

13 / 14

B Glossaire

1image docker:

docker engine:

jenkins:

java:

5Conteneur 0CI:

docker networks:

docker volumes:
Distribution linux:
layer d'image (docker):
10pockerhub:

14 / 14

